
www.manaraa.com

University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2007

ProjectSnap: Addressing the Project Fragmentation Problem ProjectSnap: Addressing the Project Fragmentation Problem

Erin Michael Brimhall
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Brimhall, Erin Michael, "ProjectSnap: Addressing the Project Fragmentation Problem" (2007). Graduate
Student Theses, Dissertations, & Professional Papers. 776.
https://scholarworks.umt.edu/etd/776

This Professional Paper is brought to you for free and open access by the Graduate School at ScholarWorks at
University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional
Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please
contact scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/776?utm_source=scholarworks.umt.edu%2Fetd%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

www.manaraa.com

PROJECTSNAP: ADDRESSING THE PROJECT FRAGMENTATION PROBLEM

By

Erin Michael Brimhall

Bachelor of Arts, Carroll College, Helena, MT, 2003

Professional Paper

presented in partial fulfillment of the requirements
for the degree of

Master of Science

in Computer Science

The University of Montana
Missoula, MT

Summer 2007

Approved by:

Dr. David A. Strobel, Dean

Graduate School

Dr. Yolanda Reimer, Chair
Computer Science

Dr. Joel Henry

Computer Science

Dr. Cameron Lawrence
Business

www.manaraa.com

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iv

CHAPTER 1 PROJECT OVERVIEW 1

 Introduction……………………………………………………………….. 1

 The Challenges of Personal Information Management…………………. 1

 The Project Fragmentation Problem ………………………………...….. 3

 The Solution………………………………………………………………... 7

CHAPTER 2 THE APPLICATION 10

 Overview…………………………………………………………………..... 10

 Work Processes…………………………………………………………….. 12

 Snapshots…………………………………………………………………… 13

 Snapshot Details…………………………………………………………… 17

 Other Functionality………………………………………………………... 20

CHAPTER 3 SOFTWARE DESIGN 25

 Overview……………………………………………………………………. 25

 System Architecture……………………………………………………….. 26

 MainApplicationWindow Subsystem…………………………………….. 26

 Snapshot Subsystem……………………………………………………….. 30

 ApplicationObject Subsystem…………………………………………….. 35

 ApplicationDocument Subsystem………………………………………… 37

 Validating & Launching Snapshots………………………………………. 39

 ii

www.manaraa.com

CHAPTER 4 IMPLEMENTATION 41

 Technical Risks…………………………………………………………….. 41

 ProjectSnap Development Process………………………………………... 42

 ProjectSnap Installation & Removal……………………………………... 45

CHAPTER 5 USER TESTING 47

 Introduction………………………………………………………………... 47

 Goals………………………………………………………………………... 47

 Method……………………………………………………………………… 48

 Results………………………………………………………………………. 49

CHAPTER 6 PROJECT EVALUATION 54

 Assessment…………………………………………………………………. 54

 Future Work……………………………………………………………….. 56

BIBLIOGRAPHY 59

APPENDIX A 60

APPENDIX B 62

 iii

www.manaraa.com

LIST OF ILLUSTRATIONS

Figure 1.1 Example of the project fragmentation problem…………..……………... 4

Figure 1.2 Implementation of ProjectFolders……………………………………… 7

Figure 2.1 The default interface appearance of ProjectSnap……………………….. 11

Figure 2.2 The ProjectSnap splash screen………………………………………….. 11

Figure 2.3 An example Work Process……………………………………………… 12

Figure 2.4 The “New Work Process” dialog box…………………………………… 13

Figure 2.5 The “Delete Work Process” message box………………………………. 13

Figure 2.6 An example snapshot……………………………………………………. 14

Figure 2.7 The “New Snapshot” dialog box………………………………………... 15

Figure 2.8 The “Delete Snapshot” message box……………………………………. 15

Figure 2.9 The “Web Page Already Open” message box…………………………... 16

Figure 2.10 The “Snapshot Error” message box for a missing file....………………. 17

Figure 2.11 The “Snapshot Error” message box for an unreachable web page…….. 18

Figure 2.12 The larger snapshot preview image area………………………………. 19

Figure 2.13 The “Snapshot Details” datagrid………………………………………. 20

Figure 2.14 The ProjectSnap notify icon…………………………………………… 21

Figure 2.15 The notify icon context menu………………………………………….. 21

Figure 2.16 The “New Snapshot” pop-up balloon………………………………….. 22

Figure 2.17 The ProjectSnap menu strip……………………………………………. 22

Figure 2.18 The save before exiting message box………………………………….. 23

Figure 2.19 The status bar message when the user saves their work……………….. 23

 iv

www.manaraa.com

Figure 2.20 The status bar message when the user copies a snapshot……………… 24

Figure 3.1 The main application form subsystem…………………………………... 27

Figure 3.2 The SnapshotCollection class…………………………………………… 28

Figure 3.3 The ProjectSnapFileIO class……………………………………………. 29

Figure 3.4 The Snapshot subsystem………………………………………………… 31

Figure 3.5 The Snapshot class………………………………………………………. 33

Figure 3.6 The ScreenGrabber subsystem………………………………………….. 35

Figure 3.7 The ApplicationObject subsystem………………………………………. 36

Figure 3.8 The ApplicationDocument subsystem…………………………………... 37

Figure 4.1 The ProjectSnap setup wizard…………………………………………... 46

 v

www.manaraa.com

CHAPTER 1

PROJECT OVERVIEW

Introduction

 This paper will discuss the activities behind the creation of a software application

designed to assist students in higher education with managing and revisiting electronic

work processes related to their academic tasks. First, the paper will explore the

background of this area of study in terms of other research that has been conducted and

the related systems that were developed. This review will help to illustrate the problem

this research addresses as well as put the solution in perspective. A majority of this paper

will cover the design and implementation of the application itself, as this was the primary

focus of the project. Next will be a look at the different aspects of the system, including

requirements, design, implementation, and user testing. Finally, this paper will conclude

with an evaluation of the software system and future uses and enhancements.

The Challenges of Personal Information Management

 Teevan, Jones, and Benderson (2006) define Personal Information Management

(PIM) as the use of tools to “…support the activities we, as individuals, perform to order

our daily lives through the acquisition, organization, maintenance, retrieval, and sharing

of information.” While the general concept of PIM extends beyond the realm of

computers (e.g. managing physical artifacts), this discussion focuses strictly on research

involving the management of electronic information. PIM is a fundamental aspect of

 1

www.manaraa.com

computer use, as millions of individuals manage their personal data on a daily basis in

order to facilitate both work and leisure activities. By exploring the general

characteristics and problems associated with PIM, especially the challenges individuals

face when organizing and revisiting electronic information, researchers stand to enhance

user experiences through the improvement of software functionality and usability.

Extensive research has been conducted to further our understanding of how

individuals manage their electronic data. Specialized software applications are often

developed in concert with research efforts in an attempt to address the challenges

uncovered during a study. One paper entitled, “Stuff I’ve Seen: A System for Personal

Information Retrieval and Re-Use” focuses on the difficulties users have revisiting

electronic information previously encountered (Dumais, Cutrell, Cadiz, Jancke, Sarin,

and Robbins, 2003). The authors’ solution was an application that tracked users’

computer activities, enabling it to later list and detail the information items the user had

already seen (e.g. files, emails, web pages, etc). The focus of this particular research

effort was on information seeking behavior, specifically, the seeking of information that

had been previously found. Many other aspects of PIM exist, including organizing and

combining information, as well as seeking new information.

Other research efforts to study and address the challenges of PIM include an all-

encompassing system entitled “MyLifeBits” (Gemmell, Bell, Lueder, Drucker, and

Wong, 2002), which was designed to emulate the concept of a Memex; an information

management concept first described by Vannevar Bush (1945). The goal of MyLifeBits

 2

www.manaraa.com

was to first act as a general information store that included everything from notes and

paperwork, to audio and video data. It then expanded upon the general notion of the

Memex to include extensive querying abilities and to allow “multiple visualizations in the

user interface” (Gemmell, et al., 2002). Related systems already exist, such as Haystack

(Adar, Karger, and Stein, 1999), which provides functionality similar to MyLifeBits,

including the creation of information collections and annotations, and unique

visualizations onto the stored data. Systems like MyLifeBits and Haystack (Adar, et al.,

1999) attempt to tackle numerous aspects of PIM at once. The project described in this

paper adopts a more focused effort that seeks to address a single problem in PIM related

to the way users manage their electronic work processes. While the author certainly does

not discount the value of tackling broader, more intricate problems, the scope and

magnitude of this particular issue paired well with the average complexity of a graduate-

level research project, especially in terms of the allotted timeframe and resources. In the

next section we will discuss the challenges of managing electronic work processes and

projects, and detail several potential solution approaches to assist users in this particular

area of PIM.

The Project Fragmentation Problem

As mentioned earlier, there are numerous challenges associated with PIM,

including how information is sought, gathered, stored, organized, combined, and recalled.

While it is certainly possible (and in many cases beneficial) to tackle several of these

concepts in a single research effort, many studies choose to focus on a single problem or

concept. One such study conducted by Bergman, Beyth-Marom, and Nachmias (2006),

 3

www.manaraa.com

identifies what they call the “Project Fragmentation Problem” in personal information

management. This problem, they say, occurs “when someone who is working on a single

project stores and retrieves information items relating to that project from separate

format-related collections” (Bergman, et al., 2006). Figure 1.1 helps to illustrate this

concept.

Figure 1.1. Example of the project fragmentation problem.

 Here we see information related to “Chemistry” that is separated into different

collections (i.e. documents, emails, and web “favorites”) based on the data format.

Because of this separation, a user faces unnecessary difficulties accessing and using the

information when it comes time to perform Chemistry-related tasks. The research of

Bergman et al. (2006) showed that interface design has a dominant effect on users’

organizational strategies. For example, users will tend to separate their information

according to format when the application interface seems to suggest this strategy.

Conversely, users often choose to combine their information regardless of format when

this behavior is supported by the interface. Another interesting trend described by

 4

www.manaraa.com

Bergman et al. (2006) is the tendency for users to separate their information according to

projects, as opposed to storing different formats apart. It is possible then that users may

lose many of the relationships and contextual cues of their project data because of the

project fragmentation problem.

 Bergman et al. (2006) describe three potential software approaches to address the

project fragmentation problem; integration through search, integration through an

additional structure, and the single hierarchy. Integration through search includes such

current applications as Stuff-I’ve-Seen (SIS) (Dumais et al. 2003), PC Data Finder, and

Google Desktop. These tools address the project fragmentation problem by allowing

users to search for project data across multiple different file formats using a single query,

eliminating any reliance on how the information is organized, either in concert or

disparately. While this approach is clearly beneficial in aiding the finding and retrieval

of project information, it fails to completely capture the context in which the data is used,

and what relationships the different pieces of information share. This approach also

cannot guarantee that all information resulting from a query is pertinent to the project

sought by the user.

 The integration through an additional structure approach to addressing the

project fragmentation problem relies on the use of an outside application that provides the

user with the means to specify a personal organizational hierarchy. Project data items are

typically incorporated into a hierarchy using “shortcuts” that point to a particular piece of

information. While the use of an additional structure allows the user to organize and

 5

www.manaraa.com

view project data through a single interface, it also presents potential difficulties. Users

would be taxed with managing many structures, such as the ones where the different

pieces of information are actually stored, and the hierarchy of “shortcuts” in the

additional structure. There are currently a number of experimental and commercial

systems that employ this strategy, including Raton Laveur (Bellotti and Smith, 2000),

UMEA (Kaptelinin, 2003), Drag Strip, and OneNote.

 Bergman et al. (2006) present a third solution to the project fragmentation

problem that they refer to as the single hierarchy, in which all project data is stored in the

same folder regardless of format. They describe a possible implementation of this

strategy in a system called ProjectFolders (shown in Figure 1.2), which organizes

information on a per-project basis and uses tabs to separate data according to type (e.g., a

tab for files, a tab for emails, etc.). Still, this solution has problems of its own. Users

would be required to abandon their existing organizational strategies and favor an

approach that has them storing all related project data in a single location. Rather than

adapting to users’ current habits and conceptual models, the single hierarchy solution

would present an organizational strategy that may be very different from what some users

are accustomed to.

 6

www.manaraa.com

Figure 1.2. Implementation of ProjectFolders.

The Solution

 Computer users employ a wide range of PIM tools and strategies to organize

personal, electronic information, and still more ways to correlate and integrate different

pieces of data into a single project or work process. Rather than try to force different

information organization and storage behaviors on users, a solution has been developed

that takes the best parts from the additional structure and single hierarchy strategies

described Bergman et al. (2006), and combines them into an application that allows for

the efficient creation and modification of project workspaces across different data

formats and collections. This application, which has been dubbed, “ProjectSnap”, allows

users to take “snapshots” of their computer’s currently running applications and any

documents or web pages open therein, creating a single reference (e.g. file) that the user

 7

www.manaraa.com

can access at a later time to instantly revisit and continue with the work process or project

as it was at the time of the “snapshot.”

 The “reference” mentioned above essentially stores application information, such

as the name and path of an application, as well as information about the files opened,

including their names, types, and paths. When a reference is revisited by a user,

ProjectSnap instantly re-opens all documents and applications captured at the time of the

“snapshot.”

 One of the driving requirements decisions behind ProjectSnap was to avoid a

forcing function that would necessitate users alter their current organizational strategies

in order to benefit from the system, such as in the single hierarchy approach described by

Bergman et al. (2006). ProjectSnap functions independent of the formats and locations

users choose to store their project data, and instead relies simply on what applications are

running and what documents are open at the time a “snapshot” is created. Another high-

level requirement for ProjectSnap is simplicity in managing projects or work processes.

Unlike applications using the additional structure approach that impose added

organizational overhead by having the user manage yet another electronic hierarchy,

ProjectSnap focuses on efficient creation of project “references” using a small number of

steps and controls. Overall, ProjectSnap helps to streamline the capturing and revisiting

of electronic work processes in an effort to address just one of the many challenges

associated with personal information management. The next chapter will detail the

 8

www.manaraa.com

functionality and usage of ProjectSnap by detailing the different interface components

and the underlying conceptual model the application is based on.

 9

www.manaraa.com

CHAPTER 2

THE APPLICATION

Overview

 ProjectSnap’s functionality has been divided into three primary categories: Work

Processes, Snapshots, and Snapshot details. In this section of the paper we will discuss

each of these components in terms of the interface appearance, behavior, and available

features. The basic appearance of ProjectSnap can be seen in Figure 2.1. A late addition

to ProjectSnap was a splash screen (Figure 2.2) displayed before the main application

actually opens. The displaying of the splash screen introduces the application and shows

the user that progress is being made on loading any existing work processes and

snapshots.

 10

www.manaraa.com

Figure 2.1. The default interface appearance of ProjectSnap. The area at the top is

the Work Processes section, the area to the right is the Snapshots section, and the

center-most area is the Snapshot details section.

Figure 2.2. The ProjectSnap splash screen.

 11

www.manaraa.com

Work Processes

 The first step a user must take in using ProjectSnap is to create a Work Process.

A Work Process represents a specific project that the user is working on, e.g. writing a

research paper. ProjectSnap was created such that a work process must always be

selected in the list, excluding the situation where the user has not created any work

processes. This was done to establish some guarantee of what configuration the interface

would be in, as well as limit potential confusion for the user. Figure 2.3 shows an

example Work Process, “CS101 Research Paper,” in the Work Processes section.

Figure 2.3. An example Work Process.

The user is presented with two functions in the Work Processes area: creating and

deleting work processes. When the “New Work Process” button (the folder with “plus”

on it) is clicked, the user is prompted to specify a name for the new work process (Figure

2.4). Once a name is entered and the user has clicked OK, the new work process will

appear in the Work Processes list.

 12

www.manaraa.com

Figure 2.4. The “New Work Process” dialog box.

 The user has the option of deleting an existing work process using the “Delete

Work Process” button (the folder with the red “x”). When this button is clicked,

ProjectSnap will prompt the user if they want to delete the currently selected work

process (Figure 2.5). Deleting a work process causes all snapshots contained within it to

also be deleted.

Figure 2.5. The “Delete Work Process” message box.

Snapshots

Once the user has created at least one Work Process, they are then able to start

taking snapshots. Snapshots represent a particular moment in time when work was being

performed on a work process. They include images of what the computer display looked

like at that moment, the date and time, a name for the snapshot (specified by the user),

and, most importantly, information about the running applications and open documents.

 13

www.manaraa.com

The snapshot image and name, along with the date and time it was created, provide visual

cues to assist the user with identifying particular snapshots. ProjectSnap was created

such that a snapshot is always selected in the list, excluding the situation in which the

user has not created any snapshots. This was done to establish some guarantee of what

configuration the interface would be in, as well as limit potential confusion for the user.

Figure 2.6 shows an example snapshot in the “Snapshots” display list.

Figure 2.6. An example snapshot.

The user is presented with four functions in the Snapshots area: creating, deleting,

launching, and copying snapshots. While each of the first three features has a button

 14

www.manaraa.com

related to it, copying a snapshot is accomplished by clicking and dragging a snapshot to a

different work process. When the “New Snapshot” button (the note with the green “+”)

is clicked, the user sees a small form (see Figure 2.7) that prompts them to enter a name

for the snapshot. After a name is entered, the “OK” button is clicked and the new

snapshot appears in the list.

Figure 2.7. The “New Snapshot” dialog box.

 The user has the option of deleting an existing snapshot using the “Delete

Snapshot” button (the note with the red “x”). When this button is clicked, the user is

asked if they want to delete the currently selected snapshot (see Figure 2.8). Clicking

“OK” effectively removes the snapshot from the list, while clicking “Cancel” returns the

user to the primary interface with no changes made.

Figure 2.8. The “Delete Snapshot” message box.

 15

www.manaraa.com

 In order to revisit or “launch” a specific snapshot that is part of a work process,

the user must click the “Launch Snapshot” button (the yellow star). Clicking this button

effectively launches all the items that were capture at the time the snapshot was taken.

For example, if the user was browsing a folder and had a web page and a Word document

open when a snapshot was taken, launching that snapshot would re-open the folder, web

page, and Word document.

 There are a number of problematic scenarios that can occur when the user

attempts to launch a snapshot. The first scenario is when one or more snapshot items (i.e.

web pages, documents, etc) is identical to an item that is already open. For example, the

user might already have a web browser window with Google open, and then try to launch

a snapshot that contains the Google homepage. Rather than ignoring this, ProjectSnap is

able to detect these duplicates and ask the user if they intended to open a second copy

(see Figure 2.9). If they click “Yes,” a second copy of the document in question is

opened; clicking “No” causes ProjectSnap to move on to trying to launch the next item in

the snapshot.

Figure 2.9. The “Web Page Already Open” message box.

 16

www.manaraa.com

 The second scenario that can occur when a user goes to launch a snapshot is if a

file or folder belonging to the snapshot has been moved or renamed. For example, if the

user has a Word document open called, “Assignment1.doc” when the snapshot is taken,

and they later rename that same document to something else, say, “Assign1.doc,”

ProjectSnap will detect this the next time the user tries to launch the snapshot. If

ProjectSnap cannot find a file, it has been renamed, relocated, or deleted. Whichever the

reason, ProjectSnap will notify the user of this error and ask if they want to keep the item

in the snapshot or remove it (see Figure 2.10).

Figure 2.10. A window that notifies the user that a file could not be found and asks

if they want to exclude it from the snapshot.

 The third scenario that can occur when a user goes to launch a snapshot is if the

snapshot contains one or more web pages, but the user’s computer is not connected to the

Internet, or the web page in question is unreachable for any number of other reasons (e.g.

the web page’s server is down). Before launching a web page from a snapshot,

ProjectSnap first determines if the web page link is reachable. If it is not, the user is

 17

www.manaraa.com

shown a message (see Figure 2.11) similar to Figure 2.10, notifying them of the error

and giving them the option of removing the erring item from the snapshot.

 Ultimately, it is the responsibility of the user to manage the windows open on

their computer in a way that best facilitates their activities and prevents confusion and

clutter. If a user wishes to have an excessive number of windows open or display

multiple copies of the same file, ProjectSnap will allow this. It is the author’s assumption

that users will work on a computer in a way they best see fit and not expect ProjectSnap

to manage this aspect for them, as this is simply not its intended purpose.

Figure 2.11. A window that notifies the user that a web page could not be found and

asks if they want to exclude it from the snapshot.

Snapshot Details

In addition to the “Snapshots” list (Figure 2.6), ProjectSnap also presents the user

with two other views of the information contained within snapshots. The first view is a

larger image of the computer screen, taken the same moment as when the snapshot was

created (see Figure 2.12). This image is identical to the one used for a snapshot’s

 18

www.manaraa.com

thumbnail in the list display. The enlarged preview provides a more detailed view of the

windows and programs that were open when the snapshot was created, giving the user a

valuable contextual cue for when they return to a work process.

Figure 2.12. The larger snapshot preview image area (denoted by the dashed line).

 The second viewing area for snapshot information is the data grid list of all the

documents, folders, and web pages that were captured in a particular snapshot (see

Figure 2.13). From this list, users can quickly and easily identify what items are

contained with a snapshot, and even launch the items individually (by double-clicking or

through a context menu). The data grid has three columns: the document icon, document

name, and document path. The document icon shows the system icon associated with the

particular item type, providing the user with a quick and useful visual cue. The document

 19

www.manaraa.com

name column displays the title of the specific web page, document, or folder, and the

document path column contains the local or internet path leading to the item.

Figure 2.13. The “Snapshot Details” datagrid.

 As a user navigates the ProjectSnap interface, switching between different work

processes and snapshots, the various display components update accordingly to reflect the

user’s actions. For example, when the user switches between work processes, the list of

snapshots updates, along with the enlarged snapshot preview image and details data grid.

Other Functionality

 In addition to the functionality surrounding work processes and snapshots,

ProjectSnap has a handful of other features implemented to help streamline usability and

round off the list of system requirements. While ProjectSnap is a tool that assists users

with managing their work processes, the application itself is not actually part of a work

process. For instance, if a user is conducting research on the Internet to facilitate the

writing of a paper, ProjectSnap can help them save and recall this work process, but it is

not an actual part of the work the user is conducting. With this in mind, the author

decided that there needed to be a way to hide ProjectSnap from the context of an active

 20

www.manaraa.com

work process, while still making its features available. The solution was to make project

snap dock as a notify icon (i.e. one of the small icons visible near the system clock on the

taskbar) when the user minimized it. Figure 2.14 shows the result of minimizing

ProjectSnap.

Figure 2.14. The ProjectSnap notify icon.

Docking ProjectSnap as a notify icon causes it to be removed from the taskbar,

effectively excluding it from the user’s current work process. Once ProjectSnap is

docked, the user can access a few features by right-clicking the icon for a context menu

(see Figure 2.15).

Figure 2.15. The notify icon context menu.

 21

www.manaraa.com

These features include restoring ProjectSnap (i.e. bringing it back into view),

creating a new snapshot (which is placed in the last active work process), and exiting

ProjectSnap. Creating a snapshot via the notify icon provides the user with suitable

feedback (see Figure 2.16).

Figure 2.16. The pop-up balloon informing the user of the newly created snapshot.

 Like the majority of Windows-based applications, ProjectSnap features a simple

menu strip across the top of the interface that provides access to a handful of general

functionality items. In this case, only the “File” item is available with just two options

beneath it (see Figure 2.17).

Figure 2.17. The ProjectSnap menu strip.

 Users can select the “Save” item to effectively record the current work processes

and snapshots that are in ProjectSnap. All work process and snapshot data is saved to an

 22

www.manaraa.com

external file that is loaded whenever ProjectSnap is opened. If the user tries to exit the

application without explicitly saving their changes, they are prompted to see if they

would still like to save (see Figure 2.18).

Figure 2.18. The save before exiting message box.

 When the user saves their progress, a status bar along the bottom of the interface

displays a simple message informing the user of this (see Figure 2.19). The status bar is

also used to display a message when the user copies a snapshot from one work process to

another (see Figure 2.20).

Figure 2.19. The status bar message when the user saves their work.

 23

www.manaraa.com

Figure 2.20. The status bar message when the user copies a snapshot.

ProjectSnap implements a variety of application controls (e.g. lists, thumbnails,

data grids, etc) that, when combined in a single interface, present the user with numerous

options and paths to access the underlying functions and features of the system. Next,

Chapter 3 will examine the initial design efforts that proceeded ProjectSnap’s

implementation, and finish by detailing the underlying architecture that comprises the

heart of the application.

 24

www.manaraa.com

CHAPTER 3

SOFTWARE DESIGN

Overview

 As a Windows-based application, ProjectSnap relies heavily on the use of forms

and form controls, including ListViews, Buttons, DataGridViews, MenuStrips, and

PictureBoxes, to name a few. Behind the various forms and controls is a carefully

conceived system architecture that accommodates the gathering and storing of various

data, as well as the enforcement of any relationships between this data. ProjectSnap

consists of twenty-one (21) classes arranged into a number of cohesive subsystems that

accommodate everything from the creation and storage of snapshots, to the reading and

writing of data to and from an external file.

One of the goals behind the architecture design was to facilitate extensions to the

system, particularly in regard to what applications and documents can be “captured” by

ProjectSnap. As it stands now, ProjectSnap can accommodate Windows Explorer (i.e.

folder browsers), Internet Explorer, Microsoft Word, and Microsoft PowerPoint.

Because of how the architecture has been broken up, it is a relatively simple task to

incorporate the new functionality needed to capture other applications; a task left up to

future programmers. In this chapter of the paper, we will discuss the system architecture

of ProjectSnap, as well as detail a number of the subsystems and their classes in terms of

their attributes and methods.

 25

www.manaraa.com

System Architecture

 The system architecture for ProjectSnap was first created using IBM’s Rational

Rose, a unified modeling language (UML) development application. This diagram

provided the starting point for development, though quickly became outdated as work

progressed. The final architecture diagram was generated automatically by Microsoft

Visual Studio, and then tweaked for consistency by the author. Because of its size, the

diagram cannot be shown in its entirety. Instead, we will discuss the different subsystems

and the relationships between them, starting with the main application form subsystem

(Figure 3.1).

MainApplicationWindow Subsystem

 The MainApplicationWindow class composes a large portion of the ProjectSnap

application, specifically, the application window itself, the controls on the window, and

all the routines that dictate the actions taken when a user interacts with the controls (i.e.

Event Handlers). This class is “collapsed” in Figure 3.1, that is, the attributes and

methods are not visible. This is done because of the sheer size of the class. At over one-

hundred attributes and methods, showing MainApplicationWindow in an expanded view

in this paper is simply not possible. Instead, we will focus on the different classes

contained in and used by MainApplicationWindow.

 26

www.manaraa.com

Figure 3.1. The main application form subsystem.

First is the NewSnapshotCollectionForm class. This class implements the form

shown when the user clicks the “New Work Process” button (see Figure 2.4). Its

attributes consist primarily of form controls such as the input text box and the “OK” and

“Cancel” buttons. Its methods include event handlers for the actions taken when the user

interacts with a control (e.g. what happens when the user clicks the “OK” button).

Next is the NewSnapshotForm class. This class implements the form shown

when the user clicks the “New Snapshot” button (see Figure 2.7). This class is similar in

many ways to the NewSnapshotCollectionForm, as they both offer essentially the same

functionality.

 27

www.manaraa.com

Next is the SnapshotCollection class. This class implements the data structure

responsible for storing snapshots (referred to as a “work process” in the application

itself). A SnapshotCollection has a number of attributes, including the date it was

created, the snapshots it contains (an ArrayList called, “Items”), the name of the snapshot

collection, and the number of snapshots it holds. The methods implemented in this class

revolve primarily around operations on snapshots, including adding and removing

snapshots to and from the collection. The “ValidateCollection” method is responsible for

verifying that the contents of each snapshot in the collection are error-free. Refer to

Figure 3.2 for a more detailed look at the SnapshotCollection class.

Figure 3.2. The SnapshotCollection class.

Attached to the MainApplicationWindow class is the ProjectSnapFileIO class.

This class implements the attributes and methods needed to read and write work process

and snapshot data to an external file. In a nutshell, the ProjectSnapFileIO class reads and

 28

www.manaraa.com

writes data using a method called “serialization.” Serialization allows for entire objects

(both system and user-defined) to be converted into pure binary form. Once the

information is converted, it can then be written to an external file using a FileStream,

which is a built-in time of the Microsoft .NET Framework. Information that has been

“serialized” can also be “de-serialized,” effectively decoding objects and their contents

from pure binary. Generally speaking, ProjectSnap saves its data by “serializing” the

work processes and snapshots and saving them to a file. Similarly, it opens its saved data

by “de-serializing” the output file and storing the encoded work processes and snapshots

to a local variable (in this case, an ArrayList). See Figure 3.3 for a more detailed look at

the ProjectSnapFileIO class.

Figure 3.3. The ProjectSnapFileIO class.

 29

www.manaraa.com

Ultimately, the MainApplicationForm subsystems stores some number of

SnapshotCollection objects, which in turn store some number of Snapshot objects.

MainApplicationForm must know about the Snapshot class (in order to do things like

populate the snapshot list with the correct information), but it has no idea about (and no

access to) the data structures underlying the Snapshot class. This design was done

specifically to reduce coupling between classes, and to ensure that changes in the lower-

level classes would have little to no effect on the more high-level classes. Next, we will

discuss the Snapshot subsystem.

Snapshot Subsystem

 The Snapshot subsystem is comprised of six primary classes: the Snapshot,

ScreenGrabber, ApplicationObject, ApplicationObjectCreator, ApplicationDocument,

and ApplicationDocumentCreator classes. Together, these data structures provide the

basis for creating, storing, and manipulating snapshots and their contents. Figure 3.4

gives a general view of the Snapshot subsystem. Next, we will discuss each of these

classes in more detail.

 30

www.manaraa.com

Figure 3.4. The Snapshot subsystem.

 The Snapshot class implements the attributes and methods responsible for storing

and accessing general information about a snapshot, such as its name, the data and time it

was created, as well as the methods that initiate the process of “capturing” the running

applications and documents. Figure 3.5 shows an expanded view of the Snapshot class.

Like SnapshotCollection, the Snapshot class also implements a validation method

(“ValidateSnapshot”) that assists in verifying the applications and documents of a

snapshot.

 As we saw in Chapter 2, each snapshot includes an image of the computer screen

to provide a visual cue to the user. In order to create this image, the Snapshot class uses

methods contained within the ScreenGrabber class. ScreenGrabber is actually a small

subsystem of its own, as it uses wrapper functions from two external libraries

 31

www.manaraa.com

(specifically, the GDI32 and User32 DLLs), though we will not examine this subsystem

in detail. See Figure 3.6 for a diagram of the ScreenGrabber subsystem. The

ScreenGrabber subsystem independently creates and stores a bitmap image of the desktop

that the Snapshot class later uses.

 In general terms, SnapshotCollections contain Snapshots, Snapshots contain

ApplicationObjects, and ApplicationObjects contain ApplicationDocuments.

ApplicationObject is an abstract class (as denoted by its dashed border line in Figure

3.4), meaning that it acts as the base class for an inheritance hierarchy, as well as

specifies the signature of one or more abstract functions that are actually implemented in

each class that is derived from ApplicationObject. The purpose of ApplicationObject and

its derived classes (which we will discuss shortly) is to store information about the

applications that are “captured” when a snapshot is taken, such as the name and path. We

will discuss the ApplicationObject subsystem in more detail later.

 32

www.manaraa.com

Figure 3.5. The Snapshot class.

As ApplicationObjects are created, so are ApplicationDocuments.

ApplicationDocument is another abstract class that provides the interface for creating

more specific class definitions. In general terms, the ApplicationDocument class and its

derived classes are responsible for storing information about specific documents that

were “captured” when a snapshot is created. These classes also implement a number of

important methods, including ones that validate the document, check if a document is

already open, and ones that actually open the document (i.e. open it for the user to see).

We will discuss the ApplicationDocument subsystem in more detail later.

 33

www.manaraa.com

ApplicationObject and ApplicationDocument each have their own object factories (i.e.

ApplicationObjectCreator and ApplicationDocumentCreator), which each implement a

single function that creates and returns a reference to its respective object type.

When a snapshot is created, the general process flow of the Snapshot subsystem is

as follows: the Snapshot class uses its TakeSnapshot method, which starts by calling the

CreateApplicationObject method in the ApplicationObjectCreator class. The

CreateApplicationObject method cycles through the various types supported by

ProjectSnap (i.e. Word, Internet Explorer, PowerPoint, etc), determining which

applications are open and then creating the appropriate ApplicationObjects.

CreateApplicationObject then calls the CreateApplicationDocument method in the

ApplicationDocumentCreator class. Based on its input, CreateApplicationDocument

creates the specific ApplicationDocument object, sets its attributes, and returns the

reference to the object. CreateApplicationObject then takes the ApplicationDocument

reference and stores it in an ArrayList that is part of the ApplicationObject being created

at that particular moment. This is repeated until all the documents for the specific

ApplicationObject type have been captured and saved. Once CreateApplicationObject

has looped through all the open applications and documents, creating some number of

ApplicationObjects and ApplicationDocuments, these new objects are stored in an

ArrayList that is then stored in the Snapshot object itself. The TakeSnapshot method also

utilizes the ScreenGrabber class routines to create a bitmap image of the system desktop,

which is then stored in an attribute of the Snapshot class. Next, we will discuss the

ApplicationObject and ApplicationDocument subsystems.

 34

www.manaraa.com

Figure 3.6. The ScreenGrabber subsystem.

ApplicationObject Subsystem

 The ApplicationObject subsystem implements the inheritance hierarchy

responsible for storing information about specific applications that are captured with a

snapshot. It also implements a handful of methods for launching the applications and

 35

www.manaraa.com

their related documents. Figure 3.7 provides a high-level view of the ApplicationObject

subsystem.

Figure 3.7. The ApplicationObject subsystem.

 As mentioned earlier, ProjectSnap supports the capture of several application

types: Word, PowerPoint, Windows Explorer, and Internet Explorer. In Figure 3.7, we

see that ApplicationObject provides the base class for the inheritance hierarchy, with

PowerPointApp, MSWordApp, and ShellWindowApp as classes that are derived from it.

An interesting fact that was encountered during development was that the operating

system did not delineate between Windows Explorer windows and Internet Explorer

windows: it treated them both as “Shell Window Objects.” Because of this, only one

derived class, ShellWindowApp, was needed to handle what first appeared to be two

completely different objects.

 As the implementation stands now, there is actually very little difference between

the four classes shown in Figure 3.7. In other words, ProjectSnap would function

properly by only using the ApplicationObject class and abandoning the inheritance

 36

www.manaraa.com

hierarchy all together. However, the author chose to leave this structure in place with the

expectation that future development of ProjectSnap might require it, as well as the fact

that this inheritance hierarchy makes the system architecture more understandable.

ApplicationDocument Subsystem

 The ApplicationDocument subsystem implements the inheritance hierarchy

responsible for storing information about the documents and windows that are captured

with a snapshot. It also implements a variety of functions for launching and validating

the documents. Figure 3.8 shows a high-level view of this subsystem.

Figure 3.8. The ApplicationDocument subsystem.

 Each of the four derived classes from ApplicationDocument have specific

implementations of key functions that were defined as abstract in the base class. The first

function is OpenDocument. Because the four document types are so different, they each

require their own specific way of being opened. For example, a Word document is

launched by programmatically creating a new instance of a Word application, creating a

new instance of a Word document object using information from the MSWordDocument

 37

www.manaraa.com

class, and then launching the document object with the application object.

ExplorerDocument, on the other hand, requires a completely different method for

opening itself that revolves around the use of shell windows. The second function is the

ValidateDocument function. When a snapshot is loaded or launched, ProjectSnap first

verifies that its contents are valid, i.e. that they can be found according to their respective

names and paths. The ValidateDocument method in each of the derived classes follows

specific steps to determine if a document is reachable. For example, a

MSWordDocument is validated by programmatically creating a File object using the path

and file name of the particular Word document. If this fails, we know that something

about the Word document has changed (e.g. it was relocated or renamed).

Validating if an InternetExplorerDocument (i.e. a web page) is reachable was a

totally different matter. Since a web page is not a local file (like a Word document)

ProjectSnap uses a WebClient object that tries to browse to the address stored in the

InternetExplorerDocument object. The problem with this was that the WebClient object

would cause ProjectSnap to “hang” for several minutes as it tried to connect to an

unreachable web address. The author’s solution was to use a multi-threaded approach.

The actual call to test the web address using the WebClient is made in a thread separate

from ProjectSnap’s. It also times out after 5 seconds. The end result is a way of testing a

connection to a web page that doesn’t interrupt the operating of ProjectSnap. If the web

address cannot be reached after 5 seconds, it is assumed it cannot be reached at all.

 38

www.manaraa.com

Validation & Launching Snapshots

 As mentioned in the previous sections, the SnapshotCollection, Snapshot,

ApplicationObject, and ApplicationDocument classes all have a validation function of

some kind. The validation process starts from the top down, beginning at the

SnapshotCollection class. The ValidateCollection function loops through all the

snapshots in the collection and calls each one’s ValidateSnapshot function. The

ValidateSnapshot method then loops through all the ApplicationObjects stored in the

snapshot and calls each one’s ValidateObject method. The ValidateObject method then

loops through all the ApplicationDocuments stored in the particular ApplicationObject

and calls each one’s ValidateDocument method. It is at this level where the actual

validation occurs. Recall that at the ApplicationDocument level, the ValidateDocument

method is abstract and is actually implemented in each of the four derived classes.

Through the power of polymorphism, ProjetSnap is able to determine which of the four

ValidateDocument functions is called based on the underlying class type of

ApplicationDocument. As errors are discovered, they are propagated back up to the

Snapshot level, where the user is given the opportunity to deal with them (see Figure

2.10 and Figure 2.11).

 Launching a snapshot is achieved in a way similar to how it is validated. Starting

at the Snapshot level, the LaunchSnapshot method is called, which loops through each

ApplicationObject stored in the snapshot and call each one’s LaunchAllDocuments

method. The LaunchAllDocuments method loops through all the ApplicationDocuments

stored in the ApplicationObject and calls each one’s LaunchDocument method. It is at

 39

www.manaraa.com

this level where the actual code exists that opens the document on the user’s computer.

Again, using polymorphism, ProjectSnap can automatically determine which version of

the LaunchDocument method to call based on the underlying document type (e.g.

MSWordDocument, InternetExplorerDocument, etc).

 Behind the scenes, ProjectSnap’s features and appearance are implemented

through numerous classes and other programming constructs, each with its own (often

extensive) set of attributes, methods, and relationships. Chapter 3 has detailed this

underlying design. In Chapter 4, the process and challenges involved in developing

ProjectSnap will be discussed, including how technical risks related to system

development were addressed, and the general order in which system components were

designed and implemented.

 40

www.manaraa.com

CHAPTER 4

IMPLEMENTATION

Technical Risks

 Before actual development began, the author faced a number of key technical

challenges with ProjectSnap. These high-risk factors dictated whether or not key

concepts behind ProjectSnap could even be implemented. The primary technical risk that

was addressed was how to programmatically attach to running instances of applications

and gather information about them. In order for a snapshot to “capture” application and

document data, ProjectSnap needed to determine what applications were open, create

some kind of hook for each one, and then read in information about them (e.g. the name

of the application, where its executable is located, the name of the documents open in it,

the path to those documents, etc). It was the author’s initial hope that the Windows

operating system maintained some general list of the running applications and

documents, and that creating a snapshot would involve accessing and reading data from

this list. The first few weeks were devoted to exploring this concept.

 As work progressed, it became apparent that such a list of applications and

documents did exist in the operating, but its uses were limited. The Running Objects

Table (ROT) maintains a listing of the application objects actively executing on a

computer, but what “objects” are registered in the table was unclear and inconsistent. For

example, one instance of Microsoft Word could be running that wasn’t registered with

 41

www.manaraa.com

the ROT, while another running instance was. Whether or not an object became

registered depended on many things, and could not be counted on with any sort of

confidence. Even after using the ROT to get a listing about an object, it wasn’t possible

to determine the local file path of the object’s application file, let alone the information

about the object’s open documents. A different approach was needed.

 The author soon found that each type of application (e.g. Word, PowerPoint,

Internet Explorer, etc) required a specific approach for attaching to it. The MS Office

Interop libraries provided key methods for attaching to running instances of Word and

PowerPoint, while Windows Explorer and Internet Explorer required the use of special

system libraries centered around shell window objects. The first bit of code written for

ProjectSnap tested how the Word, PowerPoint, Windows Explorer, and Internet Explorer

applications could be attached to. Once the author was satisfied that this approach was

possible, development began on the ProjectSnap application itself.

ProjectSnap Development Process

 Project development was completed almost exclusively on the author’s research

laptop, along with a lab desktop computer that was used to host the Visual Source Safe

configuration management software and the actual ProjectSnap program files. Once the

source controls were in place and the high-risk technical factors had been addressed,

ProjectSnap was developed and tested over the course of approximately 11 weeks,

bringing the total time to research, develop, and test the application to around 4 and a half

months (18 weeks).

 42

www.manaraa.com

 Development began based on the initial system architecture designed in Rational

Rose. With the design diagram, the author identified the major subsystems (e.g.

ApplicationObject subsystem, ApplicationDocument subsystem, etc.) and began coding

from the top down. For example, with the ApplicationObject subsystem, the base class

(ApplicationObject) was created first in order to specify the basis for the derived classes,

which were implemented immediately afterwards. Each module was tested as it was

finished, and then tested again as the modules were combined to form subsystems. A

basic Windows form interface was needed in order to test aspects of certain subsystems

and view the results. This basic testing form slowly evolved into the ProjectSnap

application interface itself. As new subsystems were created, new controls (such as

ListViews, Buttons, and DataGridViews) were added to the form to test the additional

data structures. Each control on the application form went through a gradual process of

changing the appearance and position of the control, as well as adding more functionality

and behavior that was tested as development progressed.

 Eventually, the design and layout of the main application window of ProjectSnap

was finalized. By that time, the base functionality of work processes and snapshots had

been implemented, though many details still needed attention. It wasn’t actually until

later in development that the ApplicationDocument subsystem design was finalized and

implemented. This was due to the author’s erroneous decision that the ApplicationObject

subsystem would handle the majority of complex operations (e.g. opening and verifying

data, capturing data, etc), when in reality these operations belonged in the

 43

www.manaraa.com

ApplicationDocument class. The ApplicationDocument class was unable to handle these

operations alone, so it was converted to the base class for the inheritance hierarchy that

now forms the ApplicationDocument subsystem.

 As testing was conducted on the various functional components of ProjectSnap,

new requirements began cropping up that had not been identified in the requirements

development stage of the project. See Appendix C for the initial (and now outdated) list

of system requirements. Two examples of unplanned system requirements are error-

handling and data validation, both of which became key components of ProjectSnap’s

functionality and usability. Previously unanticipated usage scenarios were identified in

the interface that caused many different unrecoverable errors, so programmatic

safeguards were added to ensure that the effects of these errors was lessened, or that their

occurrence was prevented entirely (i.e. via the different validation functions). Many of

the late additions to ProjectSnap were purely superficial or only slightly improved the

user’s experience. Things like tooltips on controls, a status bar to display user feedback,

and improved error messages added small but noticeable quality to the application.

 Ultimately, the implementation of ProjectSnap followed a rather hybrid approach

of both the spiral and iterative development processes. Work began by first identifying

and addressing the high-risk areas of the project, then developing and testing on a per-

subsystem basis, and then iterating through different builds of the application as new

problems and solutions were discovered. This process provided the much-needed

flexibility to adapt to the varying technical challenges that arose during development.

 44

www.manaraa.com

The overall impact of changing directions during development was alleviated by a solid

system architecture that allowed for new system components to be added and modified

with relative ease. The end result is a concise, well-tested, well-documented application

that provides interesting and valuable functionality, as well opportunities for future

extensions and improvements.

ProjectSnap Installation & Removal

 ProjectSnap can be installed on a computer by launching the “setup.exe” file

included with the installation package. This file launches the Project Snap setup wizard,

which allows the user to specify a number of options, including where to install

ProjectSnap and which users will have access to the application (see Figure 4.1). The

default installation path of ProjectSnap is “C:\Program Files\University of

Montana\ProjectSnap\”

 45

www.manaraa.com

Figure 4.1. The ProjectSnap setup wizard.

 The setup wizard creates a shortcut icon on the desktop that allows ProjectSnap to

be quickly launched. Once installed, ProjectSnap can be removed from the system

through the “Add/Remove Programs” menu under “Control Panel.”

 ProjectSnap’s development posed many challenges and risks that were overcome

or mitigated. Some issues were anticipated and addressed accordingly, while others

sprang up unexpectedly and were remedied or diverted as quickly as possible. The next

chapter will discuss the user testing conducted on ProjectSnap, including the goals,

method, and materials used for the tests. It will conclude with an overview of the results

and their implications for the system.

 46

www.manaraa.com

CHAPTER 5

USER TESTING

Introduction

 Testing is a key activity in producing high quality software applications. From

the beginning of development until the end, a system must be tested in order to ensure

that defects are efficiently detected and fixed. Basic testing began early with

ProjectSnap, starting at the unit and subsystem level, and continuing up to rudimentary

system and acceptance testing. As a heavily user-centered application, the author felt it

necessary that ProjectSnap undergo testing with real test subjects in order to evaluate the

system’s acceptability in terms of its features and usability, as well as to identify any

errors or missing functionality. In this chapter of the paper we will discuss the user

testing that was conducted on ProjectSnap, including the goals and method. We will

conclude by looking at the testing results and their implications for the system.

Goals

 Like most software applications, the purpose and use of ProjectSnap is well-

understood by its creator, but not necessarily by the casual computer user. This gulf of

understanding can stem from many things, including the inherent complexity of the

application, a subtle or specialized problem area, or poor interface design and usability.

One of the goals for ProjectSnap’s testing was to evaluate the users’ understanding of

what exactly the application does and how it could be useful to them, if at all. Because

 47

www.manaraa.com

the typical computer user does not currently have tools similar to ProjectSnap available to

them, it is important to determine whether the application is easy to learn and use. Users

would quickly lose any sense of why they would want to use ProjectSnap if the

application is too difficult to understand.

 In addition to identifying any conceptual difficulties user might have with

ProjectSnap, testing was also conducted to uncover any defects, usability issues, and

missing functionality. In the next section we will discuss the materials and test

environment, as well as how testing was conducted.

Method

 In order to test the key functional components of ProjectSnap, the author began by

developing a set of materials to help guide the user through a specific set of activities to

perform on the system during the testing session. These activities were broken up

according to a series of scenarios and tasks, with the scenarios describing a hypothetical

situation in which the users should conduct one or more tasks. See Appendix A for a

copy of the user testing scenarios and tasks handout. Test results were recorded by the

author in the form of worksheet notes, separated according to the respective scenario and

tasks. This worksheet also included three post-test interview questions. See Appendix B

for a copy of the user testing worksheet. Since the testing involved human subjects (i.e.

university students) the author sought and received written approval from the Institutional

Review Board (IRB) at the University of Montana. This approval ensured that the testing

was safe for the subjects to participate in and that the person administering the tests (i.e.

 48

www.manaraa.com

the author) had taken and passed the pertinent exams on ethical testing procedures and

considerations.

 Testing was conducted on the author’s laptop computer in room SS402 of the

Computer Science Department. The laptop included the latest version of ProjectSnap, an

active Internet connection, and a desktop folder containing a number of files needed to

complete the scenarios and tasks. The author informally recruited 4 test subjects,

including 3 graduate students from the Computer Science Department and 1 graduate

chemistry student.

 Testing sessions lasted an average of 45-minutes and included a brief introduction

of the system by the author, followed by the user working through the list of scenarios

and tasks. Users were told that even though the author would be present during testing,

he would not be able to answer their questions (at that time) or assist them. Test subjects

were encouraged to think out loud as they worked and ask questions that could be

answered at the end of the test session. Once the user finished the scenarios and tasks,

the author interviewed them briefly on their experience (see the end of Appendix B for

the short list of interview questions).

Results

 User response to ProjectSnap was notably positive. Test subjects appreciated

ProjectSnap for a variety of reasons, especially its functionality which they felt was new,

interesting, and useful. The layout of the interface was generally well-liked, with

 49

www.manaraa.com

subjects saying that the color scheme and button icons were appropriate and intuitive.

The different form components seemed clearly related to most subjects, though one

subject reported that the relationship between a snapshot and the datagrid contents was

not immediately obvious to him. He suggested that this confusion could be alleviated by

somehow reorganizing the form controls or even adding new labels.

 There were a handful of functional obstacles that each test subject ran into. The

first was the absence of double-click functionality on snapshots. When a test subject

went to launch a snapshot, they always first tried to double-click the snapshot item in the

list. At testing time, the only way to launch a snapshot was by using the “Launch

Snapshot” button; double-clicking the list item had no effect. Another unimplemented

feature that users consistently attempted to find was a context menu on the snapshots.

When test subjects were asked to copy a snapshot they always first tried to right-click the

snapshot, looking for a context menu with a “Copy” item on it. Of course, no such

context menu exists on the snapshots, causing users to stumble briefly before eventually

creating the copy by dragging and dropping a snapshot with the mouse.

 Test subjects consistently looked to the “File” menu strip item for functionality,

such as for adding new work processes and snapshots, and copying snapshots. The only

two items under “File” are “Save” and “Exit.” Users did not return to the “File” menu

after seeing its items, but it is clear that certain redundancies should exist in order to

provide users with more than one path to key functionality. Tables 5.1, 5.2, and 5.3 detail

the results from the ProjectSnap user testing. Table 5.1 details the ideas for new

 50

www.manaraa.com

functionality, Table 5.2 details ideas for modifying existing functionality or behavior,

and Table 5.3 details general issues or concerns with the application. Test results are

numbered, categorized (either “New Functionality,” “Modified Functionality,” or

“General Issue”), and given a short title and description.

 51

www.manaraa.com

Category: Title: Description:

1 New Functionality Double-click Snapshots

Double-clicking a snapshot in the
list should produce the same
result as clicking the “Launch
Snapshot” button, i.e. launching
the snapshot.

2 New Functionality Snapshot Context Menu

Right-clicking a snapshot in the
list should bring up a context
menu with options such as, “New
Snapshot,” “Cut,” “Copy,”
“Paste,” “Delete,” “Rename,” and
“Launch.”

3 New Functionality Extended Datagrid
Context Menu

A “Remove” option should be
added to the datagrid context
menu so users can easily omit
items from a particular snapshot.

4a New Functionality Extend Menustrip

The “File” item on the menu strip
should be expanded to include a
“New” option that expands to
include “New Work Process” and
“New Snapshot.”

4b New Functionality Extend Menustrip

An “Edit” item should be added
to the menustrip that would
include such options as, “Cut,”
“Copy,” “Paste,” “Delete,” and
“Rename.” These items would
only operate on the currently
selected work process or
snapshot.

4c New Functionality Extend Menustrip

A “Snapshot” item should be
added to the menustrip that will
include at least one option:
“Launch Current Snapshot.”

5 New Functionality Support More
Applications

While no user actually brought
this up during testing, the author
believes that adding support for
more applications is key to
making ProjectSnap more useful.
Adobe PDF files should be the
first item on the list of
applications to add support for.

Table 5.1. Ideas for new ProjectSnap functionality.

 52

www.manaraa.com

Category: Title: Description:

1 Modified
Functionality

Minimizing and Hiding
ProjectSnap

Currently, when ProjectSnap is
minimized, it is removed from the
taskbar and docked as a “notify
icon” near the system clock. This
confused many users when it first
happened. Instead, ProjectSnap
should remain on the taskbar
when it is minimized. If the “X”
button on the application window
is clicked, then ProjectSnap
should dock as a notify icon. If
the user wishes to actually exit the
program entirely, they can do so
through the “File” menu or by
using the context menu on the
notify icon. This
minimizing/closing behavior
would closely match that of
Microsoft Messenger.

2 Modified
Functionality

Left-clicking the Notify
Icon

Currently, the notify icon does not
respond to a single clicked from
the left mouse button. The
functionality of the icon’s context
menu should be modified so it
displays with both a single right
and left mouse click.

Table 5.2. Ideas for modifying existing ProjectSnap functionality.

Category: Title: Description:

1 General Issue
Connection Between
Current Snapshot &

Datagrid

A few users mentioned that it was
not immediately clear what the
relationship is between the
currently selected snapshot and
the datagrid contents, i.e. that the
datagrid was displaying the
“contents” of a snapshot.

Table 5.3. General user issues with ProjectSnap.

 53

www.manaraa.com

CHAPTER 6

PROJECT EVALUATION

Assessment

 The creation of ProjectSnap was challenging on many levels, with obstacles and

questions arising at practically every stage of development. The first issues arose as soon

as the author posed the key concept behind ProjectSnap: how can you programmatically

connect to and capture information from running applications? While there was no

question this was possible, whether or not it was doable according to the author’s

technical background and project timeframe was another matter. The first 4 weeks of

work was spent researching this question and developing test code to verify the

information found. While the author enjoyed a considerable amount of success initially,

especially when it came to programmatically connecting to Microsoft products, this

progress quickly waned. Numerous difficulties arose with connecting to Adobe Acrobat

Reader; the application which supports the PDF file type. Because of the project’s time

constraints, support for PDF files has been left for future enhancements.

 Despite a variety of technical challenges the author feels he has accomplished a

majority of his goals through the development of ProjectSnap, particularly to create an

application that helps computer users manage their electronic work processes. One of the

initial concerns with the project was not just can this be done, but also, can this be

useful? The entire concept of ProjectSnap originated from the author and was not based

 54

www.manaraa.com

on existing studies with proven results. The risk of failure in either the implementation or

in the value of the end product was very real. While the author held a good deal of

confidence with the usability and features of ProjectSnap before user testing, the

feedback and comments from the different test subjects helped solidify the usefulness and

value of the system. ProjectSnap demonstrates a way for users to quickly capture,

organize, and revisit basic electronic work processes centered around Microsoft products,

i.e. the Office suite, Internet Explorer, and Windows Explorer. The application itself

operates very efficiently in terms of the time it takes to capture and load snapshot data,

and offers a high degree of robustness and stability due to the author’s careful

consideration of usage scenarios.

 Still, even in its current form ProjectSnap has a number of areas that should be

expanded or modified to improve usability and the general benefits offered by the

application. A majority of these improvements fall under the category of functional

redundancies, in other words, multiple interface paths to key system features. The

addition of new menustrip items, context menus, and mouse-click behaviors (as described

in Tables 5.1 and 5.2) would help to round out the set of accessibility options available to

users. Overall, this project presented a challenging and innovative concept to address

programmatically. The end result is a fully functional application that offers valuable

features and interesting hints at future uses and extensions.

 55

www.manaraa.com

Future Work

 As it stands now, ProjectSnap provides efficient means for computer users to

manage and revisit their electronic work processes, all through a stable and user-friendly

graphical interface. Still, there is much work left to be done to improve and expand the

application. Besides the new interface and usability additions listed in Tables 5.1 and

5.2, the primary area that the author feels deserves the most attention is the support of

new application types in snapshots. PDF files are number one on the list of new

documents to support due to their overwhelming usage, especially by students in higher

education.

The architecture of ProjectSnap was designed with expansions in mind, especially

allowing new application and document types to be added with relative ease. For

example, to add support for a new application/document type, a number of changes

would need to take place. First off, a new class derived from ApplicationObject would

need to be created, e.g. AcrobatApp. The virtual functions defined in the

ApplicationObject class would need to be implemented specifically for the new derived

class. The CreateApplicationObject method of the ApplicationObjectCreator class would

need to be modified to handle the new AcrobatApp sub-type. Next, a new class derived

from ApplicationDocument would need to be created, e.g. AcrobatDocument. Its

ValidateDocument and OpenDocument methods would need to be implemented

specifically for the PDF file type. ApplicationDocumentCreator would need to be

modified slightly to account for the new document type (e.g. PDF files) so it would know

how to parse the input data and create an AcrobatDocument. Finally, at the Snapshot

 56

www.manaraa.com

level, the TakeSnapshot method would need to be modified very slightly to include

Acrobat files (PDFs) in snapshots.

While the description above might make it sound like a lot of work to add support

for PDF files, we have to appreciate the fact that a majority of the code needed to

accomplish this can be borrowed and reused from existing classes and methods. The

other major factor is that none of the user interface, screen capturing, or file I/O

components of ProjectSnap need to be modified to account for the new document type.

Again, one of the major goals with ProjectSnap was to reduce coupling between classes

and allow the addition of new functionality without needing to completely overhaul

existing components.

ProjectSnap was designed to be very modular in terms of how the system

components can be separated, combined, and used independently of one another. As a

result, it is possible to take and use the entire application or remove any number of its

subsystems for separate use. For example, if another researcher was interested in

capturing application data, they might copy the ApplicationObject and

ApplicationDocument subsystems into their own software. These subsystems would

provide the capturing functionality without any “snapshots” or “work processes” being

involved. Similarly, if a researcher wanted the screen grabbing or file I/O functionality,

they could easily isolate and copy these subsystems. While it would be unreasonable to

try to isolate the user interface component of ProjectSnap for separate use, the vast

 57

www.manaraa.com

number of methods contained within it could certainly provide an extensive code

reference for future researchers.

One exciting prospect for ProjectSnap was its possible inclusion in an eNotebook

system being developed by the author’s research advisor, Dr. Yolanda Reimer. The

purpose of the eNotebook is to assist students with the way they store, organize, access,

combine, and use electronic information related to their academic tasks. A work process

is just another piece of information that students might benefit from having more control

over, so ProjectSnap’s functionality seemed like an obvious complement to the features

of the eNotebook. The eNotebook could incorporate ProjectSnap in a number of ways.

One would be to simply launch ProjectSnap from the eNotebook. This approach would

be the quickest and easiest, though the eNotebook might benefit from having ProjectSnap

functionality embedded directly inside it. This approach would involve copying most all

the different subsystems of ProjectSnap, except the user interface. The eNotebook

developers would then have to decide on a new interface for accessing the functionality

of the ProjectSnap subsystems and displaying the captured data. Again, the ProjectSnap

user interface could serve as a valuable reference and source of code to copy from.

 58

www.manaraa.com

BIBLIOGRAPHY

Adar, E., Karger, D., and Stein, L.A. (1999). Haystack: per-user information
environments. In Proceedings of CIKM. ACM Press, 413-422.

Bellotti, V. and Smith, I. (2000). Informing the design of an information management
system with iterative fieldwork. Proceedings of DIS, 227-237.

Bergman, O., Beyth-Marom, R., and Nachmias, R. (2006). The project fragmentation
problem in pers onal information management. Proc. CHI 2006 – Personal Information
Management.

Bush, V. (1945). As we may think. The Atlantic Monthly, 176(1), 101-108.

Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R. and Robbins, D.C. (2003). Stuff
I’ve seen: a system for personal information retrieval and re-use. Proc. SIGIR, 72-79.

Gemmell, J., Bell, G., Lueder, R., Drucker, S., and Wong., C. (2002). MyLifeBits:
fulfilling the Memex vision. Proceedings of the tenth ACM international conference on
multimedia, ACM Press: Juan-les-Pins, France. 235-238.

Kaptelinin, V. (2003). UMEA: translating interaction histories into project contexts.
Proceedings of CHI, 343-360.

Teevan, J., Jones, W., and Benderson, B. B. (2006). Personal information management.
Communications of the ACM, January. Volume 49, No. 1.

 59

www.manaraa.com

APPENDICIES

Appendix A – User Testing Scenarios and Tasks Sheet

ProjectSnap is a simple application designed to help students in higher education
manage their electronic work processes by providing ways of saving and recalling the
open applications and documents on a computer. Two key terms associated with
ProjectSnap are “Work Process” and “Snapshot.” A Work Process can be thought of
as a specific task, such as writing a paper for a class. A Snapshot represents the state
of a Work Process at a specific moment in time. By completing the following scenarios
and tasks you will help the author identify any problems with ProjectSnap, as well as
potential new features. Please read the scenarios and tasks carefully, as I will not be
able to offer you any assistance as you work through them. If you become completely
stuck or an error occurs with ProjectSnap then I will help. Feel free to ask any
questions as you work and I will be sure to answer them at the end of this session.

Thank you for agreeing to help with this testing and good luck!

Scenario #1:

You are a college student at the University of Montana who is currently enrolled in
HIS101, Intro to World History. You have an assignment due next week and want to
begin researching and writing it. You recently installed the ProjectSnap application to
assist with tracking this and other academic work processes.

 Task #1:

Find and open the folder, “History 101” on the desktop of the computer. Open
the “History Assignment1.doc” file that is inside the folder. Type “History 101
Paper” in the MS Word document and save it. Open the “History Lecture1.ppt”
file that is inside the “History 101” folder. Open Internet Explorer and browse to
“www.google.com“ Type, “History” in the Google search field and hit the
“Enter” key. Using the shortcut on the desktop, launch “ProjectSnap.”

 Task #2:

Inside ProjectSnap, create a new Work Process and name it, “HIS101
Assignment1.” Now, create a new Snapshot and name it, “Research Day 1.”
Close all the currently open windows on the computer, including ProjectSnap. If
ProjectSnap asks if you want to save your Snapshots, click “Yes.”

 60

www.manaraa.com

Task #3:

Reopen ProjectSnap. Revisit the work you were doing on the history paper by
launching the Snapshot you took earlier. Now, close all the open windows on the
computer except ProjectSnap. Using ProjectSnap, open only the “History
Assignment1.doc” file. Create a new Snapshot called “Research Paper” and save
the changes. Close ProjectSnap and all other open windows on the computer.

Scenario #2:

You are feeling ambitious about your school work and decide to begin work early on the
second assignment for your “History 101” class. You realize that you can reuse some of
the resources from the first assignment and return to ProjectSnap for help.

 Task #1:

Open ProjectSnap. Create a new Work Process called, “HIS101 Assignment2.”
Copy the “Research Day 1” Snapshot into the “HIS101 Assignment2” Work
Process. Launch the copied version of the “Research Day 1” Snapshot.

Task #2:

Open a new web browser window and navigate to “www.wikipedia.org” Open the
“History Lecture 2.ppt” file in the “History 101” folder on the desktop. Minimize
ProjectSnap. Without restoring ProjectSnap, use the appropriate icon near the
system clock to create a new Snapshot called “Test Snapshot”. Now, restore
ProjectSnap, save your changes, and then close the application and all other open
windows.

Task #3:

Open ProjectSnap. Inside the “HIS101 Assignment2” Work Process, delete the
“Research Day 1” and “Test Snapshot” Snapshots. Delete the “HIS101
Assignment2” Workprocess. Save the changes and close ProjectSnap and all
other open windows.

Task #4:

Experiment freely with ProjectSnap. Create and delete Work Processes and
Snapshots. Do activities that will help clarify any aspects of ProjectSnap. Even
do things that you think might break the application. Feel free to ask any
questions as you work.

 61

www.manaraa.com

Appendix B - User Testing Work Sheet

Subject #:_____

Scenario #1:

 Task #1:

Find and open the folder, “History 101” on the desktop of the computer. Open
the “History Assignment1.doc” file that is inside the folder. Type “History 101
Paper” in the MS Word document and save it. Open the “History Lecture1.ppt”
file that is inside the “History 101” folder. Open Internet Explorer and browse to
“www.google.com“ Type, “History” in the Google search field and hit the
“Enter” key. Using the shortcut on the desktop, launch “ProjectSnap.”

 Task #2:

Inside ProjectSnap, create a new Work Process and name it, “HIS101
Assignment1.” Now, create a new Snapshot and name it, “Research Day 1.”
Close all the currently open windows on the computer, including ProjectSnap. If
ProjectSnap asks if you want to save your Snapshots, click “Yes.”

 62

www.manaraa.com

Task #3:

Reopen ProjectSnap. Revisit the work you were doing on the history paper by
launching the Snapshot you took earlier. Now, close all the open windows on the
computer except ProjectSnap. Using ProjectSnap, open only the “History
Assignment1.doc” file. Create a new Snapshot called “Research Paper” and save
the changes. Close ProjectSnap and all other open windows on the computer.

Scenario #2:

 Task #1:

Open ProjectSnap. Create a new Work Process called, “HIS101 Assignment2.”
Copy the “Research Day 1” Snapshot into the “HIS101 Assignment2” Work
Process. Launch the copied version of the “Research Day 1” Snapshot.

Task #2:

Open a new web browser window and navigate to “www.wikipedia.org” Open the
“History Lecture 2.ppt” file in the “History 101” folder on the desktop. Minimize
ProjectSnap. Without restoring ProjectSnap, create a new Snapshot called “Test
Snapshot”. Now, restore ProjectSnap, save your changes, and then close the
application and all other open windows.

 63

www.manaraa.com

Task #3:

Open ProjectSnap. Inside the “HIS101 Assignment2” Work Process, delete the
“Research Day 1” and “Test Snapshot” Snapshots. Delete the “HIS101
Assignment2” Workprocess. Save the changes and close ProjectSnap and all
other open windows.

Task #4:

Experiment freely with ProjectSnap. Create and delete Work Processes and
Snapshots. Do activities that will help clarify any aspects of ProjectSnap. Even
do things that you think might break the application. Feel free to ask any
questions as you work.

 64

www.manaraa.com

Post-Test Questions

1. What are some of your general thoughts about ProjectSnap? What did you

like? What didn’t you like?

2. What are features or functionality you would like to see added to ProjectSnap?

3. Is ProjectSnap an application you could see yourself using? Why or why not?

 65

www.manaraa.com

Appendix C - Initial System Requirements

System features are prioritized according to their perceived value and complexity.
Priorities appear at the ends of sentences in parentheses, e.g. (MEDIUM). High
priority items are scheduled for implementation, while only some Medium priority
features will be implemented.

1. Users will be able to create snapshots of their immediate application workspace.

1.1. Snapshots will be taken using either the “snapshot” button in the user interface,

or under the “Snapshots” menu. (HIGH)

1.2. Users will chose between a regular snapshot and a “quick” snapshot.

1.2.1. A regular snapshot will allow them to individually select which items they
want included in the snapshot. (HIGH)

1.2.2. A “quick” snapshot bypasses the selection process and automatically

creates a snapshot that includes all open applications/documents.
(MEDIUM)

1.3. The user will go through a three-step process when creating a regular snapshot:

1.3.1. Step one is to specify the applications/documents they want to include in

the snapshot (see Requirement 2). (HIGH)

1.3.2. Step two is to specify where the snapshot will be saved. (HIGH)

1.3.3. Step three is to give the snapshot a name. (HIGH)

2. Users will be able to specify which applications and documents they want to
include in their snapshot.

2.1. Once a snapshot is taken, the user will see a list of all applications, documents,

and web pages that are open and can be included in the snapshot. (HIGH)

2.2. Each item in the list will have an associated checkbox that indicates whether or
not the application/document will be included in the final snapshot. (HIGH)

2.2.1. Checking a checkbox means the item will be included in the snapshot;

unchecking a checkbox means the item will be excluded from the
snapshot.

2.3. Each item in the list will have details accompanying it, including what

application it belongs to, the name of the file or web page, and the date created
(if applicable). (HIGH)

 66

www.manaraa.com

2.3.1. This “metadata” will be displayed in a label object that shows the extra

details for the item currently selected in the list.

3. Users will be able to name their snapshots.

3.1. In the snapshot creation wizard, the user will be able to type a name for their

snapshot. (HIGH)

3.2. If the user is creating a quick snapshot, the name will default to “Snapshot xx-xx-
xx” where the x’s are the current system date. (MEDIUM)

4. Users will be able indicate where they want to save their snapshots.

4.1. In the snapshot creation wizard, a folder-selector dialog will enable the user to

select the directory to save their snapshot to. (HIGH)

4.2. If the user is creating a quick snapshot, it will be automatically saved to a
“ProjectSnap” folder in the user’s “MyDocuments” folder. (MEDIUM)

5. Users will be able to choose where they save their snapshots.

5.1. After taking a snapshot, a dialog box will appear to allow the user to select the

destination folder where the snapshot reference will be saved. (HIGH)

6. Users will be able to open snapshots that they have taken.

6.1. Snapshots will exist as .pss files that contain XML entries representing the

application and document information captured at the time the snapshot was
created. (HIGH)

6.2. Users can open snapshots in two different ways:

6.2.1. Double-clicking a snapshot file will open ProjectSnap and display the list

of applications and documents that were captured previously. (MEDIUM)

6.2.2. Open a snapshot file from within the ProjectSnap application by using the
“Open Snapshot” button or menu option. (HIGH)

6.3. Only one snapshot can be open in ProjectSnap at a time.

7. Users will be able to “launch” snapshots.

7.1. Launching a snapshot will open all applications, documents, and web pages

associated with the particular snapshot. These applications will be opened in the

 67

www.manaraa.com

operating system and not in a separate “shell” or in the ProjectSnap interface.
(HIGH)

7.2. To launch a snapshot, the user will need to open a snapshot in ProjectSnap, and

then select the “Launch Snapshot” button or menu item. (HIGH)

7.3. If applications and documents are open from previous snapshots, any new
snapshot applications and documents will be opened along with them.

8. Users will be able to modify snapshots.

8.1. The user will need to have opened a snapshot using either of the methods

described above. (MEDIUM)

8.2. The user will then select either the “Modify Snapshot” button or menu item.
(MEDIUM)

8.2.1. ProjectSnap will compare the currently open applications and documents

to those captured in the snapshot, and then list all the applications and
documents from the original snapshot, as well as those currently open that
do not match the snapshot.

8.2.2. Each item listed will have an indication as to whether it is an old

application/document that is currently opened, an old
application/document that is currently unopened, or an
application/document that is not part of the original snapshot.

8.2.3. Using the checkbox feature described earlier, the user will be able to select

and unselect which applications/documents they want to update the
snapshot with.

8.2.4. Clicking the “Update” button will save the snapshot with the new

application/document data as specified by the user.

 68

	ProjectSnap: Addressing the Project Fragmentation Problem
	Let us know how access to this document benefits you.
	Recommended Citation

	PROJECTSNAP: ADDRESSING THE PROJECT FRAGMENTATION PROBLEM

